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Magnetic-field-limited currents

J. R. Davies*
GoLP, Instituto Superior Te´cnico, 1049-001 Lisboa, Portugal

~Received 20 March 2003; published 29 September 2003!

An upper limit on the net current of a charged particle beam is derived by requiring the energy per unit
length in the magnetic field to be less than that in the particles. The limit is calculated for five different current
profiles. It is shown that an arbitrarily large net current can propagate in a large diameter ring. The results are
found to be closely related to the Alfve´n limit. A limit on the forward current in a conductor is calculated,
which defines a magnetic inhibition time.
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In this paper, I return to the problem considered by Alfv´n
@1# in 1938, the limitation of current flow by magnetic-fiel
generation. Alfve´n considered an arbitrarily large, cylindrica
beam of charged particles with a uniform current density a
no net charge density.~Cylindrical beams that vary only in
radiusr will be assumed throughout, although the followin
argument could be applied to a beam with almost any cr
section.! The magnetic field in this beam would increase l
early with radius. Alfve´n calculated the trajectories of th
particles in this magnetic field~given by elliptic integrals!,
shown in Fig. 1, and found that beyond a certain radius
particles moved backwards. This means that the forw
propagating beam initially envisaged must have a finite
dius, corresponding to a maximum current

I A-U51.65
4p

qm0
p, ~1!

whereq is the charge of the particles,p is the momentum of
the particles, and the subscriptU indicates that the limit re-
fers to a uniform current density. Equation~1! differs from
the expression given by Alfve´n @Eq. ~4!# as it is in SI units, it
does not assume that the particle’s kinetic energy is m
greater than its rest mass energy~ultrarelativistic case!, and it
has been expressed in terms of momentum instead of en
As pointed out by Alfve´n, this is not a limit on the forward
current that can propagate, but a limit on the net current
a given current profile, which has not been determined s
consistently. For example, as can be seen in Fig. 1, the m
netic field leads to a return current that will allow a high
forward current to propagate, and that will modify the cu
rent profile, modifying the limit. A possibility considered b
Alfvén was that the particles returning outside what he ca
the direct beam would allow particles at a larger radius
propagate, giving a higher forward current. In essence
argument states that a higher current can be carried by u
separate beams, to which separate limits can be applie
this case, the beams are concentric, hollow cylinders, wh
is the form filamentation takes in rotational symmetry. T
lack of self-consistency should not be seen as a problem
the aim of the analysis is not a self-consistent treatmen
beam propagation, but to address the possibility, or ra
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impossibility, of propagating a given beam. If a beam can
propagate then clearly it must be significantly modified.

Before moving on from Alfve´n’s work, it should be men-
tioned that Eq.~1! is not the result that is normally quote
nor is it Alfvén’s derivation that is normally given. Normally
a finite beam is considered, and the current at which
Larmor radius of a particle at the edge of the beam would
less than half the beam radius is calculated. This gives
Alfvén-Lawson limit ~with complete charge neutralizatio
and no magnetic neutralization! @2#

I A-1/r5
4p

qm0
p. ~2!

Alfvén gave this result as an order of magnitude estima
dropping the factor of 1.65@Eq. ~5!#. In this derivation the
dependence on current profile is not clear. In fact, by ass
ing that the Larmor radius calculated at the edge of the be
will determine when a particle is turned back, it has be
assumed that the magnetic field is uniform, which require
current density inversely proportional to radius, hence ther

FIG. 1. Particle trajectories in the magnetic field of a beam w
a uniform current density. Particles start atz50 moving parallel to
the axis with momentump. Distances are normalized so that th
total current within a radiusr is (8p/qm0)pr2. A particle starting at
r'0.9 ~thick line! has no net motion in the axial direction an
defines the Alfve´n limit. Particles starting at larger radii~dashed
lines! have a net backward motion and those at smaller radii~solid
lines! a net forward motion.
©2003 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E68, 037501 ~2003!
subscript. For a uniform current density, this is the curren
which no particle moves backwards. If the beam is emit
from a source that absorbs or reflects the particles, this wo
be the limit.

The Alfvén limit has also been calculated for the Benn
profile by Honda@3#. Bennet@4# considered a cylindrically
symmetric electron beam, neutralized by a counterstream
ion beam, with a constant axial velocity, a constant tra
verse temperature, and no axial temperature. He found e
librium solutions in which the radial force from the magne
field, generated by the axial current, balanced that from
transverse pressure. Honda considered an approximate
ticular solution for the current density given by Bennet th
has the formj 0 /(11r 2/R2)2. This case differs from those
considered previously, in that the beam has an infinite ext
but a finite total current (pR2 j 0). The limit thus depends on
radius, going to 0 at̀ . At R, which contains half the tota
current, Honda gives, from a numerical solution,

I A-B51.27
4p

qm0
p. ~3!

However, the equilibrium current is fixed by the beam p
rameters, so this treatment just gives the maximum radiu
the equilibrium. For zero ion temperature and propagat
velocity this current is (16p/qm0)(kT/v), wherekT is the
transverse electron temperature. It will only exceed Eq.~3!
when the propagation velocity is comparable to the tra
verse thermal velocity, which violates one of Bennet’s init
assumptions. The maximum radius of the equilibrium is th
much greater thanR, so the current will not be significantly
reduced. Equation~3! should instead be considered for su
a current profile that is not in equilibrium. What this resu
does show, along with that of Eq.~2!, is that the pinching
caused by the magnetic field will lower the current limit. A
a result, the limit for a uniform beam@Eq. ~1!# is unlikely to
be reached.

Let us now return to the case considered by Alfve´n, and
take a different approach, considering the radius at which
energy per unit length in the magnetic field equals that of
particles. At this point all of the energy of the particle
should have gone into the magnetic field and there would
no current. The energy per unit length in the magnetic fie
for a uniform current density, ism0I 2/16p. The kinetic en-
ergy per unit length of the particles that are generating
magnetic field iŝ K&I /qv, where^K& is their mean kinetic
energy andv is the beam propagation velocity~if this varies
with radius, an average given by the current divided by
charge per unit length should be used!. Equating these gives

I U5
16p

qm0

^K&
v

. ~4!

This result can be readily extended to any integrable cur
profile. Writing the radial dependence of the total curre
within a radiusr, I (r ), as

f ~r5r /R![
I ~r !

I ~R!
, ~5!
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the limit at radiusR can be written in the simple form

I 5
1

E
0

1

dr f 2~r!/r

4p

qm0

^K&
v

. ~6!

Evaluating Eq.~6! for j }1/r and the Bennet profile~at R) is
trivial, giving

I 1/r5
8p

qm0

^K&
v

~7!

and

I B52.59
4p

qm0

^K&
v

. ~8!

The close relationship between this limit and the Alfve´n limit
is immediately obvious. This is perhaps not surprising,
they are just different approaches to the same problem,
based on particle trajectories and the other on the conse
tion of energy.

To look more closely at the relationship between the t
limits, consider a monoenergetic beam where all of the p
ticles are moving in the same direction, which was the po
of departure for Alfve´n. We then havêK&/v5p/(111/g),
whereg is the Lorentz factor of the particles. The value
^K&/v thus varies fromp/2 in the nonrelativistic limit top in
the ultrarelativistic limit. The ratio of this limit to the Alfve´n
limit is then 1.21–2.42 for a uniform current density, 1 –2 f
j }1/r , and 1.02–2.04 for the Bennet profile. The depe
dence of this limit on the current profile, and its order
magnitude in this case, is practically the same as that of
Alfvén limit. It might be expected that a more accurate c
culation of the current limit would give a result a factor of
lower, as this is the point at which the initial energy shou
be equally divided between the energy remaining in the p
ticles and the magnetic field. The fact that the two limits c
be the same is perhaps surprising. The ratio between the
limits will be higher if the forward velocity of the particles i
lower than their total velocity, or in other words, if the bea
has a temperature. For the ratio to be much greater than 1
propagation velocity would have to be much lower than
thermal velocity. This is the case normally considered
current flow in a conductor, but in such cases effects ot
than the magnetic field usually dominate.

Apart from the simplicity of its calculation, and the fac
that it is clearly an absolute upper limit on the net curre
this limit also has the advantage over the Alfve´n limit of
being directly applicable to beams that are not monoen
getic. The main limitation that remains is the dependence
current profile, which will obviously be changed by the ma
netic field. This raises the question is there a current pro
that significantly increases this limit~other than a series o
separate beams!? The answer is clearly yes. The magnet
field generated by a current element falls as 1/r , so the
magnetic-field energy in that element (}B2r ) will also fall
as 1/r , therefore by concentrating the current at large ra
the current limit will be lowered. We have already seen th
1-2
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BRIEF REPORTS PHYSICAL REVIEW E68, 037501 ~2003!
current densities that peak on axis give a lower limit tha
uniform current density. To have a look at the other extrem
consider a uniform ring of current with radiusr and thick-
nessR, such thatr @R. The current limit in this case is

I R'
r

R

12p

qm0

^K&
v

, r @R, ~9!

to first order inR/r . The Alfvén limit in this case can be
obtained using the results for a uniform current density~Fig.
1!, the limit being defined by the particle that reaches ins
of the ring with no axial velocity, giving

I A2R
'

r

R

4p

qm0
p, r @R. ~10!

This yet again demonstrates the close relationship betw
the two limits. It should be mentioned that Alfve´n also cal-
culated a limit for the current passing a circular surface s
rounding the direct beam. He assumed that the magnetic
at the edge of the region could not exceed that at the edg
the beam. Although this limit@Eq. ~8!# differs from Eqs.~9!
and~10!, it is also proportional to the radius of the surface
less extreme example is the Hammer-Rostoker@5# equilib-
rium. They obtained a finite radius, equilibrium solution for
monoenergetic beam, where all particles have the same
momentum. The current density has the formj 0I0(r /R),
whereI0 is the zeroth order modified Bessel function, whi
is 1 on axis and increases exponentially at large radii. T
gives a limit

I HR5
1

12I 18
2/I 1

21R2/r 2

8p

qm0

^K&
v

, ~11!

where the prime denotes the derivative and the argumen
the modified Bessel functions (r /R) has been suppresse
The first factor on the right hand side of Eq.~11! tends tor /R
as r tends to infinity, so also gives a limit proportional
the radius of the beam. The equilibrium current
(r /R)(I1)(2p/qm0)p, with R given by the collisionless skin
depth on axis. This increases exponentially asr tends to in-
finity, so there is a limit on the equilibrium current. Obtai
ing the Alfvén limit for this profile requires a numerical so
lution. These results show that it is possible to have a cur
profile that allows an arbitrarily large current to propagate
a single beam. They also show that beam hollowing and
separation of excess current into rings, as Alfve´n considered,
are very efficient means of allowing a beam with exce
current to propagate.

A current limit due to electric field generation in a bea
with a net charge density could also be calculated. As
example, consider a beam with no charge neutralization
a uniform propagation velocity. Considering just the rad
electric field, which is the only component in an infinite
long, rotationally symmetric beam, gives the same resul
for the magnetic field, but multiplied byv2/c2. Including
both the electric and magnetic fields multiplies the magn
03750
a
,

e

en

r-
ld
of

ial

is

of

nt

e

s

n
nd
l

s

ic

field limit by 1/(11c2/v2). The electric field lowers the
limit and imposes a greater limitation than the magne
field. This is on the contrary to the result given by Laws
@3,5#, where the electric field increases the limit, eliminati
it for no, or sufficiently low, charge neutralization. This
because the radial electric field opposes the inwards fo
from the magnetic field. With no charge neutralization w
haveE/B.c, so the particles are not turned back. This res
can be obtained if we assume that the energy of the parti
is given by their kinetic energy plus their potential energ
However, the potential energy will only become available
the magnetic field if the particles separate completely,
stroying the beam. If we assume that there is initially
electric field, as we did for the magnetic field, then the el
tric field energy must come from the particles. As the sou
of the electric field is charge not current, it is best conside
in terms other than a current limit.

There is, however, an apparent problem with this limit f
a finite radius beam. Only the magnetic-field energy ins
the beam has been considered, but outside the beam the
a magnetic field given bym0I /2pr . If the energy in this field
is included, then the limit will fall with radius, going to 0 a
`. This field is normally considered to increase the Alfv´n
limit @1,2#. The same problem was encountered in calculat
both limits for the Bennet profile. The reason for this is th
in order to maintain the propagation of a beam there mus
a return current. What this limit gives us is the current
which this return current must flow within the beam itse
The interaction between the beam and the return current
not then be ignored, for example, by assuming that the be
is flowing inside a conducting pipe. In the absence of a
turn current a beam would propagate for a limited tim
which will fall as current increases. A time dependent curr
limit due to magnetic-field generation can be derived by
ing retarded currents. For example, the limits calculated h
correspond to roughly a light transit time across the be
radius. However, this is beyond the scope of this paper.

Finally, I will consider the propagation of a charged pa
ticle beam in a conductor. This could be a plasma, a meta
any material if the current is high enough for breakdown
occur. In this case forward currents far higher than the ab
limits can propagate, due to the presence of a return cur
from the conductor. The simplest model for this current de
sity j c is to use the basic Ohm’s law for the electric fiel
E5h j c , whereh is resistivity. This assumes that the dynam
ics of the conduction electrons is dominated by collisions,
considerations of magnetic-field limitation of the return cu
rent do not apply. Now if the beam current is much high
than the limiting value it must be almost exactly balanced
the background current, so we can usej c'2 j . Substituting
the resulting expression for the electric field into Farada
law gives

]B

]t
5“3h j , ~12!

from which the magnetic field, and hence the forward curr
limit, can be obtained. Assuming a constant resistivity an
fixed current density the calculation is straightforward. F
1-3
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BRIEF REPORTS PHYSICAL REVIEW E68, 037501 ~2003!
Eq. ~12! to be valid the current density must have a smo
profile, so it can only be applied to the example of the Be
net profile. Assuming only an axial current density gives
azimuthal magnetic field

B5
4r /R2

~11r 2/R2!3
h j 0t. ~13!

The forward current limit is then

I C-B5S tD

t D 22.5p

qm0

^K&
v

, ~14!

whereC indicates that the limit applies in a conductor andtD
is the magnetic diffusion time@3#

tD5
m0R2

h
. ~15!

It gives the time scale for which the beam and conduct
current densities remain approximately in balance (t!tD has
been implicitly assumed!. As this limit is proportional to
1/t2, it gives the maximum time for which a forward curre
ed

03750
h
-
n

n

greater than that given by Eq.~8! can propagate. For a cur
rent that exceeds Eq.~8! by a factorf, this inhibition time is

t I5
tD

1.43Af
. ~16!

Since the magnetic field significantly modifies the partic
trajectories before this limit is reached and reduces
beam’s radius, and hence the magnetic diffusion time,
must be considered as an upper limit on the inhibition tim
This indicates that even a current equal to that given by
~8! can only be maintained for a fraction of a magnetic d
fusion time. Since the magnetic diffusion time increases
the square of the beam radius, a desired propagation time
be achieved by making the beam wide enough. Evalua
the Alfvén limit in this case requires numerical technique

In conclusion, a current limit due to the generation
magnetic field has been derived by requiring the energy
unit length in the magnetic field to be less than that in
current carrying particles. It has been evaluated for five d
ferent current profiles. In particular, it was shown that
arbitrarily large current can propagate in a large diame
ring. The limit has been shown to closely follow the Alfve´n
limit. However, it has the advantages that it is much easie
calculate, is directly applicable to beams that are not m
noenergetic, and, being based on energy conservation, is
ambiguously an upper limit on the net current. A forwa
current limit for propagation in a conductor has been cal
lated, which defines a magnetic inhibition time.
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