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Magnetic-field-limited currents
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An upper limit on the net current of a charged particle beam is derived by requiring the energy per unit
length in the magnetic field to be less than that in the particles. The limit is calculated for five different current
profiles. It is shown that an arbitrarily large net current can propagate in a large diameter ring. The results are
found to be closely related to the Affudimit. A limit on the forward current in a conductor is calculated,
which defines a magnetic inhibition time.
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In this paper, | return to the problem considered by Atfve impossibility, of propagating a given beam. If a beam cannot
[1] in 1938, the limitation of current flow by magnetic-field propagate then clearly it must be significantly modified.
generation. Alfve considered an arbitrarily large, cylindrical Before moving on from Alfve’s work, it should be men-
beam of charged particles with a uniform current density andioned that Eq(1) is not the result that is normally quoted
no net charge densityCylindrical beams that vary only in nor is it Alfvén’s derivation that is normally given. Normally
radiusr will be assumed throughout, although the following a finite beam is considered, and the current at which the
argument could be applied to a beam with almost any croskarmor radius of a particle at the edge of the beam would be
section) The magnetic field in this beam would increase lin- less than half the beam radius is calculated. This gives the
early with radius. Alfve calculated the trajectories of the Alfvén-Lawson limit (with complete charge neutralization
particles in this magnetic fielégiven by elliptic integrals and no magnetic neutralizatipf2]
shown in Fig. 1, and found that beyond a certain radius the
particles moved backwards. This means that the forward - Am @)
propagating beam initially envisaged must have a finite ra- ALl q,u,op'

dius, corresponding to a maximum current .
Alfven gave this result as an order of magnitude estimate,

T dropping the factor of 1.65Eq. (5)]. In this derivation the
lau= 1'65(ﬂ p, (1) dependence on current profile is not clear. In fact, by assum-
0 ing that the Larmor radius calculated at the edge of the beam

whereq is the charge of the particle,is the momentum of Wil determine when a particle is tured back, it has been
the particles, and the subscriptindicates that the limit re- assumed that the magnetic field is uniform, which requires a
fers to a uniform current density. Equati¢t) differs from current density inversely proportional to radius, hence the 1/

the expression given by Alfve[Eq. (4)] as it is in Sl units, it

does not assume that the particle’s kinetic energy is muct 1'2:' T '/'/ ’" '\'\ N ]
greater than its rest mass enefgitrarelativistic casg and it 1ok / ,’ R 8
has been expressed in terms of momentum instead of energ T P /'r\ 1NN .
As pointed out by Alfva, this is not a limit on the forward - , \( \ \‘/\\é‘ N
current that can propagate, but a limit on the net current for 0.81 | FOrN v ]
a given current profile, which has not been determined self- C ( 1’ vﬁ/ g
consistently. For example, as can be seen in Fig. 1, the mac- 0-6[ ! \ ] ’ ]
netic field leads to a return current that will allow a higher C ‘\ \ \/ il /\ \ / ]
forward current to propagate, and that will modify the cur- 0.4 i X / 3
rent profile, modifying the limit. A possibility considered by r \ /\/ // \ } ]
Alfvén was that the particles returning outside what he called 0.2 - \\ = -
the direct beam would allow particles at a larger radius to - /\,7/)\\ \/ w .
propagate, giving a higher forward current. In essence thic 0.0 =i . ML NV M

argument states that a higher current can be carried by usin  -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
separate beams, to which separate limits can be applied. .. z
this case, the beams are concentric, hollow cylinders, which
is the form f”am_entat'on takes in rotational symmetry. Thea uniform current density. Particles starzat0 moving parallel to
lack of self-consistency should not be seen as a problem, g8e axis with momentunp. Distances are normalized so that the
the aim of the analysis is not a self-consistent treatment Ofta| current within a radiusis (8/quo)pr2. A particle starting at
beam propagation, but to address the possibility, or rathaf~.g (thick line) has no net motion in the axial direction and
defines the Alfva limit. Particles starting at larger radidashed
lines) have a net backward motion and those at smaller adlid
*Electronic address: jdavies@popsrv.ist.utl.pt lines) a net forward motion.

FIG. 1. Particle trajectories in the magnetic field of a beam with

1063-651X/2003/688)/0375014)/$20.00 68 037501-1 ©2003 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B8, 037501 (2003

subscript. For a uniform current density, this is the current athe limit at radiusR can be written in the simple form
which no particle moves backwards. If the beam is emitted

from a source that absorbs or reflects the particles, this would 1 47 (K)
be the limit. l=—0 Ao v (6)
The Alfven limit has also been calculated for the Bennet fo dpf2(p)lp

profile by Honda[3]. Bennet[4] considered a cylindrically

symmetric electron beam, neutralized by a counterstreamingvaluaﬁm‘:J Eq(6) for j<1ir and the Bennet profiléatR) is

ion beam, with a constant axial velocity, a constant trans;

verse temperature, and no axial temperature. He found equtlr—lwal’ gving
librium solutions in which the radial force from the magnetic 8w (K)
field, generated by the axial current, balanced that from the lyy=—— (7)
transverse pressure. Honda considered an approximate, par- Ao v
ticular solution for the current density given by Bennet that,,q
has the formj,/(1+r2/R?)2. This case differs from those
considered previously, in that the beam has an infinite extent, 47 (K)
but a finite total current£R?j). The limit thus depends on IBIZ-SQCW - (8)
radius, going to 0 ate. At R, which contains half the total 0
current, Honda gives, from a numerical solution, The close relationship between this limit and the Atf\ienit
is immediately obvious. This is perhaps not surprising, as
Loo=1 274_77 they are just different approaches to the same problem, one
ae=1. p. ()] : . _
Mo based on particle trajectories and the other on the conserva-

tion of energy.

However, the equilibrium current is fixed by the beam pa- To look more closely at the relationship between the two
rameters, so this treatment just gives the maximum radius dfmits, consider a monoenergetic beam where all of the par-
the equilibrium. For zero ion temperature and propagationicles are moving in the same direction, which was the point
velocity this current is (16/quo)(kT/v), wherekT is the  of departure for Alfve. We then havéK)/v=p/(1+1/y),
transverse electron temperature. It will only exceed 8.  wherey is the Lorentz factor of the particles. The value of
when the propagation velocity is comparable to the trans¢k/y thus varies fronp/2 in the nonrelativistic limit tg in
verse thermal velocity, which violates one of Bennet's initial the ultrarelativistic limit. The ratio of this limit to the Alfwe
assumptions. The maximum radius of the equilibrium is thusimit is then 1.21—2.42 for a uniform current density, 1—2 for
much greater thaR, so the current will not be significantly je1/r, and 1.02-2.04 for the Bennet profile. The depen-
reduced. Equatiof3) should instead be considered for suchdence of this limit on the current profile, and its order of
a current profile that is not in equilibrium. What this result magnitude in this case, is practically the same as that of the
does show, along with that of E@2), is that the pinching  Alfvén limit. It might be expected that a more accurate cal-
caused by the magnetic field will lower the current limit. As cylation of the current limit would give a result a factor of 2
a result, the limit for a uniform beaifEq. (1)] is unlikely to  |ower, as this is the point at which the initial energy should
be reached. ) be equally divided between the energy remaining in the par-

Let us now return to the case considered by Atfvand ticles and the magnetic field. The fact that the two limits can
take a different approach, considering the radius at which thge the same is perhaps surprising. The ratio between the two
energy per unit length in the magnetic field equals that of thgimits will be higher if the forward velocity of the particles is
particles. At this point all of the energy of the particles |ower than their total velocity, or in other words, if the beam
should have gone into the magnetic field and there would bgas a temperature. For the ratio to be much greater than 1 the
no current. The energy per unit length in the magnetic fieldpropagation velocity would have to be much lower than the
for a uniform current density, ig.ol #/167. The kinetic en-  thermal velocity. This is the case normally considered for
ergy per unit length of the particles that are generating thigyrrent flow in a conductor, but in such cases effects other
magnetic field iSK)I/quv, where(K) is their mean kinetic  than the magnetic field usually dominate.
energy and is the beam propagation velocitf this varies Apart from the simplicity of its calculation, and the fact
with radius, an average given by the current divided by thehat it is clearly an absolute upper limit on the net current,
charge per unit length should be useiquating these gives this limit also has the advantage over the Atvémit of

being directly applicable to beams that are not monoener-

:16_77 @ 4) getic. The main limitation that remains is the dependence on

Quog v current profile, which will obviously be changed by the mag-

netic field. This raises the question is there a current profile

This result can be readily extended to any integrable currenthat significantly increases this limiother than a series of
profile. Writing the radial dependence of the total currentseparate bean® The answer is clearly yes. The magnetic-

u

within a radiusr, I(r), as field generated by a current element falls as, 190 the
magnetic-field energy in that elementB2r) will also fall

f(p=|’/R)Eﬂ 5) as 1f, therefore by concentrating the current at large radii

I(R)’ the current limit will be lowered. We have already seen that
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current densities that peak on axis give a lower limit than &ield limit by 1/(1+c?/v?). The electric field lowers the
uniform current density. To have a look at the other extremelimit and imposes a greater limitation than the magnetic
consider a uniform ring of current with radiusand thick-  field. This is on the contrary to the result given by Lawson

nessR, such thatr>R. The current limit in this case is [3,5], where the electric field increases the limit, eliminating
it for no, or sufficiently low, charge neutralization. This is

r 12m (K) because the radial electric field opposes the inwards force
|R“§%7, r>R, (9)  from the magnetic field. With no charge neutralization we

haveE/B>c, so the particles are not turned back. This result
. . L . can be obtained if we assume that the energy of the particles
to f|r.st orde.r INR/r. The Alfven I'n.“t in this case can be is given by their kinetic energy plus their potential energy.
obtamegl using the re_sults for a unlfor_m current denéﬁng. ., However, the potential energy will only become available to
1), the I_|m|t b_elng deﬁ_ned by t_he pgir_tlcle that reaches Ins"d‘%he magnetic field if the particles separate completely, de-
of the ring with no axial velocity, giving stroying the beam. If we assume that there is initially no
electric field, as we did for the magnetic field, then the elec-
.~ r 4_7Tp r>R (10) tric field energy must come from the particles. As the source
AR RQug"’ ' of the electric field is charge not current, it is best considered
in terms other than a current limit.
This yet again demonstrates the close relationship between There is, however, an apparent problem with this limit for
the two limits. It should be mentioned that Alivealso cal- ~ a finite radius beam. Only the magnetic-field energy inside
culated a limit for the current passing a circular surface surthe beam has been considered, but outside the beam there is
rounding the direct beam. He assumed that the magnetic field magnetic field given byl /27r. If the energy in this field
at the edge of the region could not exceed that at the edge & included, then the limit will fall with radius, going to 0 at
the beam. Although this limitEq. (8)] differs from Eqs.(9) . This field is normally considered to increase the Affve
and(10), it is also proportional to the radius of the surface. Alimit [1,2]. The same problem was encountered in calculating
less extreme example is the Hammer-Rostdkgrequilib- both limits for the Bennet profile. The reason for this is that
rium. They obtained a finite radius, equilibrium solution for ain order to maintain the propagation of a beam there must be
monoenergetic beam, where all particles have the same axial return current. What this limit gives us is the current at
momentum. The current density has the fojgTy(r/R), which this return current must flow within the beam itself.
whereZ, is the zeroth order modified Bessel function, which The interaction between the beam and the return current can-
is 1 on axis and increases exponentially at large radii. Thigot then be ignored, for example, by assuming that the beam
gives a limit is flowing inside a conducting pipe. In the absence of a re-
turn current a beam would propagate for a limited time,
which will fall as current increases. A time dependent current
1 87 (K) o e . .
= — (11  limit due to magnetic-field generation can be derived by us-
1-T}2172+R?/r? duo v ing retarded currents. For example, the limits calculated here
correspond to roughly a light transit time across the beam
where the prime denotes the derivative and the argument ¢gdius. However, this is beyond the scope of this paper.
the modified Bessel functiong/R) has been suppressed.  Finally, | will consider the propagation of a charged par-
The first factor on the right hand side of E@1) tends tor/R  ficle beam in a conductor. This could be a plasma, a metal, or
asr tends to infinity, so also gives a limit proportional to @ny material if the current is high enough for breakdown to
the radius of the beam. The equilibrium current isoccur. In this case forward currents far higher than the above

(r/R)(Z,) (27/que) p, with R given by the collisionless skin limits can propagate, due.to the presence of a return current

finity, so there is a limit on the equilibrium current. Obtain- Sity j¢ IS to use the basic Ohm’s law for the electric field,

ing the Alfven limit for this profile requires a numerical so- E=7jc, wherez is resistivity. This assumes that the dynam-

lution. These results show that it is possible to have a curreris of the conduction electrons is dominated by collisions, so

prof”e that allows an arbitrar”y |arge current to propagate inconSiderationS of magnetlc-fleld limitation of the return' cur-

a single beam. They also show that beam hollowing and th&ent do not apply. Now if the beam current is much higher

Separation of excess current into ringS, as N[fwnsidered, than the I|m|t|ng value it must be almost eXaCtly balanced by

are very efficient means of allowing a beam with excesghe background current, so we can yise —j. Substituting

current to propagate. the rgsulting expression for the electric field into Faraday’s
A current limit due to electric field generation in a beam law gives

with a net charge density could also be calculated. As an

example, consider a beam with no charge neutralization and ﬁ—Vx . 12

a uniform propagation velocity. Considering just the radial a 77]’ (12

electric field, which is the only component in an infinitely

long, rotationally symmetric beam, gives the same result afrom which the magnetic field, and hence the forward current

for the magnetic field, but multiplied by?/c?. Including limit, can be obtained. Assuming a constant resistivity and a

both the electric and magnetic fields multiplies the magnetidixed current density the calculation is straightforward. For

IR
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Eq. (12) to be valid the current density must have a smoothgreater than that given by E() can propagate. For a cur-
profile, so it can only be applied to the example of the Ben+ent that exceeds E@8) by a factorf, this inhibition time is
net profile. Assuming only an axial current density gives an

azimuthal magnetic field b
t,= . 16
4r|R? i Since the magnetic field significantly modifies the particle
:mmot- (13 trajectories before this limit is reached and reduces the

beam’s radius, and hence the magnetic diffusion time, this
must be considered as an upper limit on the inhibition time.
The forward current limit is then This indicates that even a current equal to that given by Eq.
(8) can only be maintained for a fraction of a magnetic dif-
fusion time. Since the magnetic diffusion time increases as
tp|%2.57m (K) the square of the beam radius, a desired propagation time can
cBT |\t %T (14) be achieved by making the beam wide enough. Evaluating
the Alfven limit in this case requires numerical techniques.
In conclusion, a current limit due to the generation of
whereC indicates that the limit applies in a conductor dgd  magnetic field has been derived by requiring the energy per
is the magnetic diffusion timg3] unit length in the magnetic field to be less than that in the
current carrying particles. It has been evaluated for five dif-
) ferent current profiles. In particular, it was shown that an
i :MoR (15) arbitrarily large current can propagate in a large diameter
D™y ring. The limit has been shown to closely follow the Alfve
limit. However, it has the advantages that it is much easier to
) ) ) _ calculate, is directly applicable to beams that are not mo-
It gives the time scale for which the beam and COﬂdUCtIOI’hoenergeticy and, being based on energy conservation, is un-
current densities remain approximately in balanzet, has  ambiguously an upper limit on the net current. A forward
been implicitly assumed As this limit is proportional to  current limit for propagation in a conductor has been calcu-
142, it gives the maximum time for which a forward current lated, which defines a magnetic inhibition time.
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